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A Generalized Design Technique for Practical Distributed
Reciprocal Ladder Networks

RALPH LEVY

Abstract—A generalized design approach is presented for ladder
networks consisting of a cascade of constituent two-port networks
connected by short lengths of transmission lines. The design is.made
possible by the derivation of simple equations which define the in-
verter impedance and associated reference planes of any passive
lossless reciprocal two-port. This enables the general ladder network
to be equated to a prototype network at a reference frequency. An
example is given of the design of a coaxial low-pass filter where
fringing capacitances are compensated automatically.

INTRODUCTION

DISTRIBUTED reciprocal ladder network illustrated
in Fig. 1is defined here as a cascade of reciprocal two-
port subnetworks connected by means of transmission

lines, which are usually all of approximately equal length
and electrically short (between 0 and 3A\g/4). The network is
assumed to be lossless. The subnetworks may consist of
simple primarily lumped elements such as inductive or
capacitive irises or series gaps in a stripline, or distributed
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elements such as stubs or lengths of transmission line, or may
be mixed lumped and distributed in character. Examples of
such ladder networks are direct-coupled waveguide bandpass
filters, coaxial low-pass filters, impedance transformers, or
multielement directional couplers. The latter are four-ports,
but if symmetrical, may be decomposed into two-port even-
and odd-mode networks, and hence may be included in our
category.

A large number of papers have been published on the
design of individual ladder-network components, and a few
have included a discussion of theoretical design features com-
mon to a wider class of structures. Examples of the latter
include the use of lumped-element prototypes in the design
of direct-coupled filters and the general concept of the im-
pedance inverter by Cohn [1]. Another example is the intro-
duction of the quarter-wave transformer as a prototype cir-
cuit for the design of many ladder networks by Young [2].

The result of a typical distributed network synthesis is an
idealized component often consisting of a cascade of equal
length (commensurate) lines, with or without commensurate
stubs. In practice, the component will have junction and dis-
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continuity effects which must be compensated or taken into
account if the specification is to be met. For example, dis-
continuity capacitances in a coaxial low-pass filter would
cause an error in cutoff frequency of typically 10-20 percent,
and the passband VSWR deteriorates considerably if no
compensation for fringing capacitances is made.

+  In practice, therefore, an exact network synthesis is
usually only the first step in the complete design process.
Papers on individual components are often written with the
main feature distinguishing them from previous contributions
being the particular method used to carry out the practical
compensations of discontinuity effects. The object of this
paper is to introduce design equations and methods common
to a large class of distributed reciprocal ladder networks and
to demonstrate that certain results in previous papers are
special cases of the general formulas.

A possible exception to the above statement, that general
techniques have not been available, is the existence of gen-
eral optimization and search computer techniques, usually
referred to as computer-aided design methods. The latter
nomenclature is unfortunate if restricted to mean only search
algorithms since, as shown in this paper, other types of com-
puter-aided design techniques are available. Search algo-
rithms find limited applications at present, owing to their
inability to guarantee either convergence or a true optimum
result, and are usually very expensive in terms of computer
time. However, these algorithms may be useful in refining the
results for networks derived from approximate or imperfect
synthesis techniques. (An imperfect synthesis technique is
one which does not realize all elements of the physical
structure, e.g., fringing capacitances.)

METHOD

Initially, the design approach is to utilize a suitable proto-
type network derived by an exact synthesis procedure. The
response of the practical component is then forced to fit the
response of the ideal prototype as closely as possible. Usually,
it will be possible to force exact agreement at only one or two
frequencies. Hence it is often desirable to choose a prototype
which has a frequency dependence similar to that of the
practical distributed component. For this reason, the familiar
lumped-element low-pass-filter prototype is often unsuitable,
especially for broad-band components. The use of distributed
prototypes which are similar to, and occasionally almost
identical with, the practical component often results in sig-
nificantly improved results.

An interesting example of this is the design of inductive-
iris direct-coupled cavity filters. The theory based on the
lumped-element low-pass prototype [1] breaks down for
bandwidths of the order of 10 percent or more. An improved
theory for bandwidths as great as 40 percent is based on the
quarter-wave-transformer prototype circuit [3], [4], but is
not too satisfactory in predicting the skirt attenuation at the
larger bandwidths. The basic reason for this is that the fre-
quency dependence of the inductive irises is not taken into
account in the quarter-wave-transformer prototype.

The latest theory is based on a distributed prototype which
does take this frequency dependence into account, and gives
accurate results to bandwidths of at least 100 percent, a
bandwidth where the bandpass filter has become in effect a
pseudo-high-pass filter [5]. This may not be the end of the
story, since research on exact synthesis of mixed lumped and
distributed networks may yet produce an exact solution to
the problem.

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, AUGUST 1973

’ ’ p’ ’ b ’ ’ ’ N
z ’ }P” pm o/ 21 Pzz: e/ (3 Psz= :Pm Pn2[ 9/ (e Taazg
! ) 2 (
* ) : PR ey J ; i g *—i——-
T [
R N AN ¥ R B Y A VA
Z, ! K :Zl O] Zz: K| 1% [ A LS
1 1 *
i ! T i —_|
] P b ; (@) ! P i
1 i i : i ! | i i !
. Pu Pz, o Pa1 22 o Pa Pz, Foo Pz, o Faet Fanz
] 3
T ! , 1 ; ! ,‘_"’: !
| T I T |
2 1 A B ! z 1 Ay By ! Az By :Z A Bt z ! As B \z
1
Ot o T ricabaft Bl cangli? ot | Gl ™
—H L Hom—
: P Pl ! i Pl |
{ I i i ! : (b) t i i i
Fig. 1. Distributed ladder networks showing reference planes for (a)

the ideal prototype and (b) the physical network.

- .
90° ¢
0 K o ik o
) j ollo kK

Definition of an impedance invertet.

[0k

Z.:K72

i

Fig. 2.

Having chosen the most suitable prototype, it is necessary
to fit the response of the practical component to it as closely
as possible, taking all discontinuity and proximity effects into
account. It has been found preferable to compensate for these
ab initio, rather than attempting the compensation as a sepa-
rate stage in the design process. These observations do not
necessarily apply to components which require fine tuning,
such as narrow-band inductive-iris filters. They apply mainly
to broad-band components, for example, low-pass filters in
the TEM line or waveguide.

The process of matching the practical network of Fig. 1(b)
to the prototype of Fig. 1(a) commences by finding charac-
teristic reference planes Py, Py, Pa, P, + « -, which convert
each of the lossless passive reciprocal two-ports of the cas-
cade into an ideal impedance inverter at a given reference
frequency (for example, the cutoff frequency in the case of a
low-pass filter). The normalized characteristic impedance of
each inverter and the reference planes are then matched to
the corresponding normalized impedance and reference planes
of the prototype network. This ensures that the two networks
have identical amplitude and phase responses at the reference
frequency. The details of this general procedure will now be
described.

GENERALIZED IMPEDANCE INVERTER

The concept of the ideal impedance inverter is well
known and is shown in Fig. 2, which is almost self-explana-
tory. The impedance inverter of impedance K is a symmetrical
two-port which, looking into its input port, inverts and scales
to impedance K any impedance Z connected to its output
port. Fig. 2 indicates that the impedance inverter is a cas-
cade of a frequency-independent 90° line and an ideal trans-
former of turns ratio 1: K.

A second concept which is not so well known, and has
seldom been used, is the means for converting any lossless
passive reciprocal two-port into an impedance inverter. The
two-port is defined by its transfer matrix

(e o)
jC D
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and we assume that it is connected to transmission lines of
characteristic impedance Z, and Z; at its two-ports, as shown
in Fig. 3. It is a straightforward matter to show that it is
always possible to choose reference planes P; and P; at elec-
trical distances ¢, and ¢. from the respective ports to convert
the asymmetric two-port into a symmetric impedance in-
verter. These reference planes are related to the characteristic
reference planes of the Weissfloch equivalent circuit [6],
which is an ideal transformer rather than the very similar
impedance inverter shown in Fig. 2. The equations giving the
reference-plane locations are given in the original in terms of
impedance parameters [6], but much simpler and rather
symmetrical expressions have been found in terms of the
transfer-matrix parameters, leading to the results which
follow. Mathematical details of the derivations are given in
Appendix I. 5

Normalization of the transfer-matrix parameters in terms
of the terminating line impedances Z; and Z, gives

’ é b=——~§—
Zy \ZAYA
7y
7

a =

¢=CNZZs d=D 1)

The characteristic impedance of the inverter K is given by
the equation

K o vI-viTi= @
——— = el Vi - = —
VZ\Zs V'S

where L is the insertion loss of the inverter measured between
source and load impedances matched, respectively, to Z; and
Zz, i.e.,

L=1+1—d*+106— o @)

The normalized characteristic impedance of the inverter is
K /~/Z1Zs, which is the quantity to be made invariant when
matching a practical network to a prototype. S is the VSWR
seen at one port of the inverter when the other port is termi-
nated in its characteristic impedance. The reference-plane
locations are given by the equations

2(bd — ac)
tan 2¢1 =
(a* — d%) + (8% — ¢¥)
2(ab — cd)
tan 2¢. = (4)

(@ —a) + (0 — )

Note from (4) that an infinite number of characteristic refer-
ence planes exist, half of which correspond to the Weissfloch
equivalent and half to the impedance-inverter equivalent.
In practice, planes closest to the two-port are chosen. ¢, or
¢» may be realized as negative values in practice by absorbing
such a negative value into the adjacent positive line length,
which therefore becomes shortened in the final network.
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APPLICATION OF THE GENERALIZED IMPEDANCE INVERTER

We are now in a position to comprehend the method of
equating the prototype of Fig. 1(a) to the physical realization
of Fig. 1(b). The normalized inverter impedance and charac-
teristic reference planes of each element of the prototype are
determined, using (1)-(4). The corresponding quantities are
found for the practical network of Fig. 1(b), taking all
fringing and practical junction effects into account as far as
possible, The dimensions of the practical device are chosen
to give exact equivalence between the normalized inverter
impedances of the prototype and of the physical network ata
reference frequency. This process usually requires an iteration
technique implemented by means of a computer program. The
electrical lengths between the reference planes of the proto-
type and practical networks are then forced to coincide, i.e.,

8, =0/, i=1,2- -, m (5)

The prototype and practical networks now have identical
amplitude response (except for a possible impedance scaling
factor) at the reference frequency, and also identical phase if
the networks are delineated by the outer reference planes
Pll’y Pn+1,2' and Pu, Pn+1,2~

Note that it is not necessary for the impedances of the
connecting transmission lines of the prototype and practical
networks to be equal, and the two networks can differ only
by an overall scaling factor on the impedance level. The proof
of this statement is given in Appendix II. However, in many
cases it will be convenient to choose the corresponding im-
pedances to be equal, especially since any deviation from the
prototype values may cause the broad-band performance of
the component to deteriorate. The object is to choose a proto-
type which closely approximates the broad-band characteristics
of  the practical component; if differences in the impedances
of the connecting lines are desired, it is usually preferable to
change the prototype rather than to utilize the flexibility of
the choice of impedances in the component. An example of
the change in performance caused by changing the impedance
levels is given in [35, figs. 8 and 9]. In that case, the impedances
of the connecting lines were changed by factors of between
unity and 2.5, and the broad-band performance suffered a
considerable (but often acceptable) deterioration.

SrECIAL CASEs OF THE GENERALIZED
IMPEDANCE INVERTER

Example 1—Shunt Inductance

It is interesting to see how (1)-(4) simplify to give the
well-known results for the simple inverter used in inductive-
iris filters, This consists of a shunt susceptance b at the center
of a unit impedance line of electrical length 2¢, as shown in
Fig. 4.

The transfer matrix of the susceptance is

L)
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Fig. 5. Coaxial disk capacitor. ¢1=¢s=¢/2.

and the insertion loss is
L =1+ b?/4 €))
Hence the inverter impedance is given from (2) as
K= +/1+4b%/4 — b/2
leading to the well-known expression [1]

b=1/K — K.

)

)
Substituting a=d=1, ¢=0, and b=b in (4) gives

tan 2¢ = 2/b (10)

as required.

Example 2— Coaxial Disk Capacitor

An impedance inverter consisting of a length of low-
impedance (=Z,) transmission line with high-impedance
(=Z,) lines on either side as shown in Fig. 5 was treated by
Davis and Khan [7]. Their derivation of the impedance-
inverter parameters simplifies considerably when the general
design equations (1)—(4) are applied to the transfer matrix:

cos Bl jZysin Bl

(11)

J
— sin BI os 81
P sin 8 cos f8

0
Noting that Z,=Z;=Z,, (2) becomes
Z,. K

K Z

¢

2 75‘_1—(2" Z\ sin g1 (12
vVL—1= ZC_Z())Smﬁ' )

Using the definition of a quantity E, [7, eq. (13)] leads to
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with fringing capacitances.

In the case under consideration, we have

Zy . Z, .
a=cosBl, b=—sinBl, ¢ = —sinpl (15)
c 0
so that (14) becomes
2 cos Bl
tan¢ = —————-
(ZO + Zc) . 5l
— 4+ —} sin
Z. 7y
or
ltan g = —— (16)
tan@/tan¢p = ————
Zy Z.
Z. Zg

which is identical to |7, eq. (7)].

Example 3—Disk Capacitor with Fringing Effects

The previous examples, while trivial, illustrate the
mathematical simplifications to be gained over previous
techniques, but the complete power of the general equations
is not evident unless 2 more complex asymmetric case with
fringing effects is illustrated. The simple symmetric capacitive
disk impedance inverter treated in Example 2 was used in
[7] to design half-wave coaxial bandbass filters. In [7], the
fringing capacitances were compensated by one of three
different methods after the filter had been designed, assuming
no fringing effects. This approach is subject to varying suc-
cess as described in [7]. The most successful of the compen-
sation techniques, introduced in a previous paper of the author
[8] and denoted in [7] as method 3, does not always converge.

-1
_IS [ é However, this method should now be considered technically
Z, Z, . obsolete, being replaced by the general design equations
E = K\ Zo\E = sin 8l (13) (1)—(4) of this paper, as applied to the particular situation
[ 1 — <_) } 1— <_‘> illustrated in Fig. 6.
Z; Ze The transfer matrix of the basic two-port network is
[cos Bl 7 sin B
A B 1 0 o ! 1 0
=1{ . j sin B3I .
C D JB1 1 cos B! J} JjB: 1
( cos Bl — B.Z sin GBI 7Z sin Bl

I

in agreement with [7, eq. (14)], which is used there to deter-
mine the magnitude of the impedance inverter.
In the case when a=d, (4) simplifies to give

tan 2¢; = tan 2¢, ;:— = tan ¢. (14)

[4

1
} j[(Bl -+ B:) cos Bl + (E — BlBgZ> sin ,Bl] cos Bl — ByZ sin B

(17)

The inverter impedance may now be written down by
application of (2). If, as is usually the case, a given inverter
impedance is desired and the length / is required, a simple
iteration technique may be used. Unlike the method used in
[8], this technique always converges, except in extreme cases
where the fringing capacitances alone are themselves so
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large that a negative value of 8 results. It is then possible to
decrease the magnitude of the junction discontinuities to en-
sure convergence merely by increasing Z.

The locations of the reference planes are found by appli-
cation of (4) to the transfer-matrix parameters, and complete
compensation for the fringing capacitances will have been
accomplished.

PracTicAL LADDER-NETWORK SYNTHESIS

A number of methods are available for carrying out the
complete process of practical ladder-network synthesis by
means of a .digital-computer program. The discontinuity,
junction, and proximity effects are stored either as closed-
form expressions or as numerical data subject to interpola-
tion. The prototype network is synthesized to fit the specifi-
cation, either within the practical design program or the
prototype parameters are fed in as data. The prototype and
practical networks are divided into a cascade of impedance
inverters and the program causes these to be identical at the
reference frequency. This requires an iteration technique pro-
grammed to be rapidly convergent. The result is printed out
as a set of dimensions for the actual component, which may
then be computer analyzed ®ver the required band to check
its performance. This will be slightly inferior to that of the
prototype, except at the reference frequency where the per-
formance should be as predicted, providing one check on the
accuracy of the program. A second check is given by mea-
surement of the actual manufactured component, which
should give results in almost perfect agreement with the
computer analysis if the electromagnetic data stored within
the computer are accurate.

Example—Coaxial Low-Pass Filters

Assume that the prototype network consists of a cascade
of ideal shunt capacitances alternating with equal length
transmission lines, as shown in Fig. 7. This may be synthe-
sized by the method given in [5]. This network is to be
realized practically as a coaxial structure whose cross section
is shown in Fig. 8. Here, the ideal shunt capacitances are re-
placed by short lengths of low-impedance lines, and hence are
no longer purely capacitive. Since the spacings between these
disks are much less than one wavelength in the low-pass band,
then mutual interactions between adjacent disks must be
taken into account.

A flow diagram of the computer program is given in Fig. 9.
The inverter impedance and characteristic reference planes
of each element of the prototype (in this case, each shunt
capacitor) are determined. The diameters of the capacitive
disks in Fig. 8 are then chosen at some fixed value, which
(apart from the proximity effect) also fixes the value of the
fringing capacitances, given by a formula described later. A
rather close initial value of the thickness of a given disk may
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Fig. 9. Program flow chart.

now be given if we assume initially that it is a simple cylindri-
cal capacitor plus the fringing capacitors. The exact inverter-
impedance parameters are given in Example 3. Later in the
program we will force the inverter impedance of the exact
two-port circuit to be equal to that of the prototype and will
determine the characteristic reference planes of each disk.
The distances between reference planes of the prototype and
physical circuits are made equal at the chosen cutoff fre-
quency, which consequently determines the spacing of the
disks.

This would complete the design if it were not for the
possible existence of finite proximity effects, given for any
pair of adjacent disks as a factor P, by which each fringing
capacitor should be multiplied. The calculation of P; in a
subroutine is described later. The means by which the
proximity factors P; are taken into account are indicated in
the flow chart (Fig. 9). Initially, the proximity factors are set
equal to unity and are stored as an array under a second
variable U initially set equal to zero. After the initial values
of reference-plane locations have been determined, an initial
estimate of the proximity factors may be made and stored
under U=1. These are used to correct the fringing-capaci-
tance values. The corresponding exact values of the disk
thicknesses may be found by iteration and then the corrected
reference-plane locations. At this stage we say that if all the
proximity factors are within 1 percent of their previously
estimated values stored under U=0, we jump out of the
loop and print out the final set of dimensions. Otherwise, we
determine a new set of proximity factors and continue in the
loop. Since P; is rarely less than 0.8, the process converges
rapidly.

The final part of the program is to analyze the complete
circuit using multiplication of transfer matrices, the exact
values of the fringing capacities being determined at each
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frequency using subroutine C. As stated previously, this is
an essential part of any synthesis program, giving both a use-
ful check on the validity of the synthesis and the actual re-
sponse of the component.

Subroutines A and B have been described previously, A
being given by (1)—(3) and B by (4).

The fringing capacitance is determined in subroutine C
using the simple formula given by Somlo [9, p. 49]. This is
modified by multiplication by the frequency-correction factor
K (not to be confused with an inverter impedance) discussed
by Somlo, and plotted in [9, fig. 3]. However, since K is only
slightly greater than unity, it is sufficiently accurate to use

the formula
IHN2\—1/2
x=(1-(5))
A

where b and A are defined in [9].

If dielectric supports for the capacitive disks are used,
the fringing capacitances are assumed to be unaffected, since
the fringing fields are mainly in the air regions.

The proximity effect subroutine D consists of a set of
specific values given by Green [10, fig. 9]. Interpolation
between successive curves denoted by parameter §8 is carried
out using the fact that P is given approximately by tanh

(18)

Computed VSWR and attenuation of prototype filter shown in Fig. 10(a) and practical realization

of Fig. 10(b).

(wB). Interpolation between successive
a is taken as linear.

These subroutines and all pther steps in the program are
very rapid. For example, a complete design on a time-shared
terminal using a CDC 3600 for a high-ordered filter uses
approximately 8 s of CPU time and a few minutes of connect
time.

Example designs for low-pass-filter prototypes are given
in [5] and a practical example for an impedance-transforming
filter in [11]. Now it is interesting to redesign a low-pass filter
for the specification given in [8, fig. 6], giving a direct com-
parison between the previous method and that described
here. A suitable prototype derived by the method given in
[5] is shown in Fig. 10(a) and the dimensions of the filter in
Fig. 10(b). A comparison between the computed performances
of the prototype and practical filters is given in Fig. 11, and
indicates negligible difference. The filter was chosen to give
the same in-band VSWR and rate of cutoff as the filter given
n [8, figs. 5 and 6], but is only 4.396 in in length compared
with 11.467 in previously.

The coaxial low-pass filter is a rather favorable example,
but equally good results have been obtained for rectangular-
waveguide low-pass filters using capacitive irises [12] and
stripline high-pass filters using series capacitive gap coupling
(taking all fringing effects into account).

valyes of the variable
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APPENDIX |

DERIVATION OF THE GENERAL IMPEDANCE-
INVERTER EQUATIONS

The transfer matrix of the two-port network defined be-
tween reference planes P; and P, in Fig. 3 is

A" jB cos¢p:s  jZysingpy sd4 7B
=|jsin¢
¢ 1E e Cos ¢1 jcC D
1
cos g2 jZysin ¢y
-l 7 sin ¢2 (19)
—— COS ¢2
VA

which, by definition, is an impedance inverter if 4'=D'=0,
ie., if

B
(A COS ¢a — Z_ sin (i)g) CoS ¢y — Z] sin (31
2

o

D
'(C cos ¢2 + ZSin ¢3> =0 (20)

sin d)g

(D cos ¢ — CZ3sin ¢2) cos ¢ — —

1

“(Bcos ¢+ AZsysin gs) = 0. (21)

Defining
tan ¢1 = tl tan (i)z = (22)
and dividing (20) and (21) by cos ¢, cos ¢ gives
B Dz,
A - ‘*tz - CZ]_t]_ - tllfg = 0 (23)
1 2
D Clatr— 2t — 4% =0 (24)
of2 Z 1 7 i = 0.

Solving (23) for £ and substituting-in (24) gives

B Zy \ (4 — CZ)Z
(1) - Zh) — <cz2 + 4 —2:1><——~—i}2~2= 0

1 Zy (B 4 DZyty)
or
<BD ACZ>(1 3 + <D2Z1 i
— —— —_ t [ i
Zs ’ ' Z,  Z4Zs
AZ,
+ CZ 7, — —«—) L =0. (25
VA
Using the identity
2 tan ¢
tan 2¢ = — (26)

1—tan?¢
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then (25) can be rearranged to give

BD
2 (—-— — ACZz)
Z,

(27)

tan 2¢; =
Z B? Zy
— — C22\ 7y — D?*—
VAR AVA Zs

A2

Using the normalization given in (1), then (27) is recog-
nized as the first of (4). The second such equation is derived
by interchanging 4 and D and subscripts 1 and 2 in (27).

Equation (2) is derived by noting that the insertion loss
of the impedance inverter is given by

+ ( K \/ZZ>2
4\N2Z\Z, K
which may be solved to give K as a function of L, resulting

in (2) Note that K is independent of the location of reference
planes P; and Ps.

L=1 (28)

AppENDIX II
VARIATION OF INTERNAL IMPEDANCE LEVELS
Assume that the prototype network shown in Fig. 1(a)
is terminated in resistances matched to the line impedance
at either end. Then the impedance looking to the right at
reference plane P’ is
Kn+1/

Zn’Zn+ll

+ 7 tan 8,

Zn2, = Zn, (29)

The impedance at reference plane P, in the practical
component shown in Fig. 1(b) is given by an expression
identical to (29), except that the primes are suppressed. Hence
we see that

an Zn'll
Z, Y = Cn (30)
if
6, = 0, (31)
and
Knpi® K1
o (32)

ZnZn+1 B Zn/Zn+1/ .

Similarly, the impedance at reference plane P,_; ' normalized
to Zn—y is

K,?
p , P ’Z-—' + jtan 6,
n—1,2 n—1 Ln?2
= o (33)
1+j_Z— 7 ,tanﬁnq/
n—1 Lin2

which again is invariant if 8,—," and K,'?/Z,_,'Z,’ are invari-
ant, since by (30), Z,s" and Z,/ are related through a constant
Cy.
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Finally, transferring the impedance through the entire
network gives a final relationship
Zn Z

—Z—O = 70 (34)

showing that the networks are identical apart from an over-
all scaling factor.
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Tapered Corrugated Waveguide Low-Pass Filters

RALPH LEVY

Abstract—Several new synthesis techniques are described for
the design of tapered corrugated waveguide low-pass filters. Pre-
vious techniques are based on image-parameter methods which are
both nonoptimum and difficult to apply to new specifications. The
new synthesis methods give filters which can be constructed to work
directly from dimensions generated by a computer. The impedance
tapering implies that the terminating impedance transformers used
in the image-parameter designs may be either eliminated or reduced
in length.

INTRODUCTION

KQ x Y AVEGUIDE low-pass filters are used in numerous
systems, frequently for rejection of spurious har-
monics from transmitters. Corrugated waveguide
or waffle-iron filters introduced by Cohn [1] are most com-
monly used for this purpose. The first design methods'de-
scribed in the literature [2] are based on image parameters
rather than modern circuit theory, and involve rather compli-
cated procedures requiring empirical adjustments to experi-
mental filters before a satisfactory final design is achieved.
Later methods using synthesis techniques have been de-
scribed very briefly [3] and appear as patents [4], [5]. This
paper gives a more complete account of synthesis techniques,

including some not reported in the earlier publications.
The major advantages of the synthesis techniques are

as follows.

1) The filters may be constructed directly from dimen-
sions printed out by a computer program and work immedi-
ately with no major experimental adjustments. In common

Manuscript received December 6, 1972; revised March 23, 1973.
The author is with Microwave Development Laboratories, Inc.,
Natick, Mass. 01760.

with other types of waveguide filters, minor tuning adjust-
ments may be required to compensate for mechanical toler-
ances, especially in small waveguide sizes.

2) The synthesis technique incorporates impedance
tapering, so that terminating impedance transformers re-
quired in previous designs [2] may be shorter in length, or
even completely eliminated. This can result in a length reduc-
tion by as much as 3 to 1.

3) The cutoff frequency is predicted exactly, and the
VSWR is good in a specified frequency band extending to the
cutoff. Hence high attenuation may be specified close to the
cutoff frequency f,, typically 20 dB at 1.05f,, or 60 dB at 1.15f,.

4) The stopband performance is predicted.

5) Tradeoffs may be made between stop bandwidth, pass-
band insertion loss, and power handling capability.

Several different synthesis techniques have been formu-
lated, but they may be classified in three main categories, as
follows.

1) Tapered corrugated capacitive iris filters designed
using the distributed low-pass prototype filter [6].

2) Direct realization of a tapered corrugated filter de-
signed using a cascade of unit elements similar to [6], but with
a Zolotarev response.

3) A mixed lumped and distributed synthesis using the
“half-stub” prototype [7].

The first two methods have been found more generally
useful than the third. They are more dissimilar than indicated
above, as the detailed description will demonstrate.

A schematic view of the tapered corrugated filter is shown
in Fig. 1. The early corrugated filters were periodic structures,
but the new designs result in aperiodic structures where the
dimensions of the various capacitive and inductive regions



